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Abstract
Conditionally activated molecules, such as Probody therapeutics (PbTx), have 
recently been investigated to improve antitumoral response while reducing sys-
temic toxicity. PbTx are engineered to be proteolytically activated by proteases 
that are preferentially active locally in the tumor microenvironment (TME). 
Here, we perform an exploratory study using our recently published quantitative 
systems pharmacology model, previously validated for other drugs, to evaluate 
the effectiveness and targeting specificity of an anti-PD-L1 PbTx compared to the 
non-modified antibody. We have informed the model using the PbTx dynam-
ics and pharmacokinetics published in the literature for anti-PD-L1 in patients 
with triple-negative breast cancer (TNBC). Our results suggest masking of the 
antibody slightly decreases its efficacy, while increasing the localization of active 
therapeutic component in the TME. We also perform a parameter optimization 
for the PbTx design and drug dosing regimens to maximize the response rate. 
Although our results are specific to the case of TNBC, our findings are generaliz-
able to any conditionally activated PbTx molecule in solid tumors and suggest 
that design of a highly effective and selective PbTx is feasible.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Conditionally activated antibodies, such as Probody therapeutic (PbTx) anti-
bodies, are molecules designed to be selectively activated in the tumor micro-
environment. Recently, a phase I clinical trial has demonstrated the activity of 
pacmilimab, a PbTx with anti-PD-L1 immune-checkpoint properties, in solid 
tumors.
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INTRODUCTION

Conditional activation of drugs in the tumor microenvi-
ronment (TME) has emerged as a potential strategy for 
cancer immunotherapy in recent years. These approaches 
consist of exploiting selected properties of the TME to de-
sign molecules that are specifically activated by and target 
cancer cells. There are different approaches for targeted 
activation of the molecules in the tumor. One approach, 
utilized in Probody therapeutics (PbTx), exploits high pro-
tease activity in the tumor compared to normal tissue1 and 
involves designing molecules that are activated by tumor-
resident proteases.

One PbTx design consists of attaching a peptide mask 
via a substrate linker to the active site of the molecule.2 
The peptide mask is capable of stochastically and revers-
ibly covering the molecule's active site. The substrate is de-
signed to be cleavable by proteases expected to be highly 
active in the tumor, such as tumor-associated serine pro-
tease matriptase, urokinase plasminogen activator, and 
cysteine protease legumain.3 These enzymes digest the 
substrate linker, freeing the mask, and, thus, revealing the 
active site of the molecule. Because of the active prote-
ase-rich environment of the tumor, the PbTx is more likely 
to become activated in the TME compared to healthy tis-
sues. PbTx uses a versatile design that is applicable to a 
variety of biologically active molecules, including anti-
bodies, antibody-drug conjugates, and bispecific modal-
ity molecules.2 Among these, CX-072 PbTx, also known 
as pacmilimab, is a conditionally activated immune 
checkpoint inhibitor of PD-L1.4 Pacmilimab was tested 

in a phase I study to provide a preliminary evaluation of 
dose and schedule4–6 in patients with solid tumors. This 
pan-cancer trial suggested that a biweekly administration 
dose of 10 mg/kg provided the maximal response while in-
ducing moderate to light toxicity.

In parallel to the clinical trial, quantitative systems 
pharmacology (QSP) models have been developed to 
describe and predict the kinetics of pacmilimab.7,8 
Specifically, the model by Stroh et  al.7 is a three-com-
partment QSP model with plasma, peripheral tissue, and 
tumor compartments that include the transition between 
different states of the PbTx as well as the binding to re-
ceptors. This model was then adapted specifically to pac-
milimab8 where the preliminary data from clinical trials 
was used to calibrate the model pharmacokinetic (PK) 
and pharmacodynamic (PD) relations. However, whereas 
this model fully describes the PKs/PDs of the molecule, 
it does not include the downstream effects of the PD-L1 
checkpoint inhibition, such as the resulting T cell activa-
tion and tumor killing.

In the present study, we construct a mechanistic com-
putational model to investigate activation of antitumor 
immune response to pacmilimab. In the current state-
of-the-art, QSP models are routinely used to predict and 
explain the effects of therapies on populations of virtual 
patients.9 QSP models inform a mechanistic framework 
with the PKs/PDs of the therapy to describe, for example, 
the distribution or activity of a compound.10 Although 
QSP models describing the PbTx PKs/PDs have been pub-
lished,7,8 there have not been any models describing the 
immuno-oncologic (IO) response to these drugs.

WHAT QUESTION DOES THIS STUDY ADDRESS?
Here, we use a quantitative systems pharmacology model of immuno-oncology 
(QSP-IO), previously validated for anti-PD-L1 therapies in patients with triple-
negative breast cancer, and inform the model using previously published litera-
ture describing the PbTx dynamics and perform an exploratory investigation of 
this molecule.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This work represents the first application of a QSP-IO platform to describe the 
activation of antitumor immune response by a PD-L1 targeting PbTx. The ap-
plication of the platform in exploring antitumor response with the PbTx provides 
key clinical predictions on the PbTx's activity, and important biomarkers charac-
terizing the patient's response, as well as an investigation into how this response 
depends on the PbTx kinetic parameters and the dosing schedule.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The results obtained from our simulations suggest both possible advancements 
in the drug design as well as alternative dosing amounts and frequencies to 
maximize the drug's effectiveness while maintaining a low toxicity level.
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Here, we deploy a recently published QSP-IO plat-
form model validated for other drugs for an exploratory 
study of pacmilimab.11 We model the role of this drug in 
activation of the immune response in patients with tri-
ple-negative breast cancer (TNBC). We chose TNBC be-
cause the model was previously validated for this cancer 
type and this was one of the cancer types present in the 
published phase I trial.6 We have incorporated PbTx state 
transition dynamics7 and PKs in the QSP-IO platform 
and tested the response in patients with TNBC based on 
a published model11 for anti-PD-L1 therapy in this cancer 
type. Additionally, we have extended the QSP-IO model 
by introducing out-of-synapse dynamics (interactions 
between the drug and ligands happening outside of the 
cellular synapse). the previous model only considered 
drug-receptor interactions within the immunological syn-
apse.11–13 We validate and use this QSP-IO platform for 
the application of conditionally masked checkpoint in-
hibitors. Our results suggest masking the PD-L1 targeting 
antibody has modest impact on efficacy, while improving 
the localization of active therapeutic in the TME. We also 
perform a global parameter sensitivity analysis to suggest 
mechanisms or modifications to the molecule that may 
maximize the response rate of virtual patients to the PbTx. 
Although the current results are relevant to TNBC, we can 
envision parametrizing the model using other cancer types 
to perform similar simulations for the response to PbTx. 
The current work provides a framework for incorporating 
PbTx into the QSP-IO platform to investigate activation of 
antitumor immune response in a virtual patient setting.

METHODS

Overview of the QSP-IO model and 
addition of the out-of-synapse module

QSP-IO models are mechanistic frameworks used to pre-
dict population and individual responses to immune, 
chemo-, and combination therapies. Usually, the systems 
in question are divided into multiple compartments, each 
representing a different tissue or organ or their assemblies, 
inside which a set of explicitly modeled molecular or cel-
lular species can interact or move between compartments. 
In particular, QSP-IO models are informed with the PK/
PD relations governing the drug as well as the interactions 
between the immune system and tumor cells. Each simu-
lation is run for a different virtual patient (VP), which is 
the set of parameters describing the mechanistic relations 
or properties of each species and compartment. For each 
VP, some parameters are randomly selected from known 
physiologically relevant distributions to simulate inter-
patient variability. Whereas each VP does not necessarily 

represent a real patient, the resulting simulated cohort of 
multiple VPs yields a population average and single VP 
response to the selected therapy.

In this work, we implement the previously published 
QSP-IO model for the evaluation of pacmilimab mono-
therapy as the anti-PD-L1 immune checkpoint inhibitor.11 
Although we provide a detailed explanation of the theory 
and implementation in Appendix S1, here, we give a brief 
overview of the model.

The model used in our work, shown in Figure 1, con-
tains four distinct compartments: the tumor, tumor-drain-
ing lymph node, peripheral, and central compartment. 
The tumor compartment contains cancer and stromal 
cells and is the location where the tumor interacts with 
the components of the immune system in the TME. The 
tumor-draining lymph nodes are the location where an-
tigen presentation and T cell maturation occur. The pe-
ripheral compartment describes the rest of the body and 
it is generally used to describe unwanted activity of the 
therapy. Finally, the central compartment represents 
blood flow which connects all the compartments. Details 
on the PKs and PDs in each compartment are described in 
Appendix S1.

The model contains the dynamics of several different 
cell types from the immune system as well as those of the 
tumor. These dynamics are divided into 11 different mod-
ules, each describing interactions for different cell's or a 
key molecular species' interactions. Within these mod-
ules, we explicitly model the maturation, activation, de-
pletion, and death of CD-8, CD-4, and regulatory (Treg) 
T cells. These cells come into contact with mature anti-
gen-presenting cells (APCs) arriving from the TME. These 
APCs mature in response to the release of cytokines in the 
TME. Additionally, macrophages in the M1 and M2 con-
figurations are also modeled in the TME. The interactions 
between these different cells are ascribed to the synaptic 
compartments. This compartment includes all the dif-
ferent ligands used for immune-regulatory actions, such 
as PD-L1, PD-1, PD-L2, CTLA4, CD28, TCR, MHC, and 
CD80.

Of the 11 modules, 10 were previously implemented by 
Wang et al.11; here, we also introduce an additional com-
partment to explicitly model the out-of-synapse dynamics. 
We explicitly include only PD-L1, because it is the only li-
gand that will interact with the PbTx, however, we want to 
emphasize that the same procedure can be applied to the 
other ligands, that is, CTLA4 and PD-1. We do not include 
binding between the downstream pathways of PD-L1 in 
the cell, but we recognize that these can lead to some ad-
ditional dynamic effects as reported in literature.12 We 
follow a similar approach for out-of-synapse compart-
ment modeling as proposed by Bazzazi et  al.13 Whereas 
quantifying the differences between the ligand densities 
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inside and outside of the synapse, as well as the area that 
is definable as “synapse,” is still debated, here, we follow a 
procedure similar to Wang et al.11 to model these two com-
partments. We assume that there is a baseline PD-L1/2 
expression on cancer and immune cells, which can be up-
regulated by IFN-γ upon immune activation, based on the 
difference in measured PD-L1/2 expression in resting and 
activated immune cells.14 Additionally, all ligands are al-
lowed to interact with the PbTx, whereas only the ligands 
in the synaptic compartments are allowed to interact with 
ligands of other cells. We assume that there is no net dif-
fusion between synapse and out-of-synapse, which means 
that we can consider the concentrations within each com-
partment as independent. We assume that all the other 
properties, such as interaction distances of ligands and 
the diffusive properties of the antibody, are the same as 
in the synapse. All the equations describing the synaptic 

and out-of-synaptic binding are found in Appendix  S1 
(Equations S66-S68).

Overview of the 
Probody therapeutic dynamics

The following is an overview of the PbTx dynamics and 
is explained in more in detail in Appendix S1. Although 
PbTx PK/PD have been previously published,7,8 this work 
represents the first application of a QSP-IO platform to de-
scribe the activation of antitumor immune response by a 
PD-L1 targeting PbTx. Whereas the model complexity is 
further dealt with in the Supplementary Materials, here, 
our overview covers the key parameters that govern the 
PbTx mechanics (Equations S51–S65), that is, the cleavage 
and unmasking rates.

F I G U R E  1  Diagram detailing the quantitative systems pharmacology model used in this work. Compared to previously published 
study,11 this model includes the out-of-synapse dynamics of PD-L1, as shown in the bottom left panel, as well as the Probody therapeutics 
(PbTx) dynamics.
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Pacmilimab is a PbTx that is an activatable anti-PDL1 
antibody. It has a mask covering the active sites of the an-
tibody component that is kept in proximity thereto by a 
cleavable substrate linker, as shown in Figure 2a. The PK 
model describing the PbTx dynamics has been described 
previously by Stroh et al.7 Briefly, the mask is allowed to 
stochastically and reversibly shift and reveal the active 
site. This unmasking rate is governed by an equilibrium 
constant KM, which is the likelihood that the mask will 
reveal the active site. If this were the only addition to the 
antibody, then the PbTx would just be a less active form 
of its parent solely due to the reduced exposure of the ac-
tive site. However, this reduced exposure is made selective 
because the key property of the PbTx is that the substrate 
holding the mask is cleavable by proteases overexpressed 
in the TME. These proteases are tumor-associated serine 
protease matriptase, urokinase plasminogen activator, 
and cysteine protease legumain1 for pacmilimab; however, 
it is possible to select other substrates that are digestible 
by different enzymes.15 As shown in Figure 2a, these en-
zymes bind to the substrate and cleave it, freeing the mask 
from the antibody and, thus, irreversibly revealing the ac-
tive site. The idea is that outside of the TME, where active 
proteases are rare, the PbTx is a minimally active version 
of the unmasked antibody while in the TME, thanks to 
the cleaving ability of the enzymes, the antibody is fully 
activated and can act with its full pharmacologic poten-
tial. Although the proteases are overexpressed by cancer 
cells and stromal cells in the tumor compared to healthy 
tissues, each cancer type demonstrates different level of 
expression.16 Additionally, even within the same can-
cer type, there is a distribution of these active proteases. 
Thus, diverging from the previous PbTx models, we model 
the cleavage rate kcvg as a patient-dependent parameter, 

where the mean of kcvg is set to the one reported value in 
literature.

We calibrate the model using data provided in Stroh 
et al.,8 as shown in Figure 2b. In these experiments, a single 
injection of pacmilimab at doses 0.1, 0.3, 1, 3, and 10 mg/
kg was administered. Initial calibration of the PKs of pac-
milimab in patients was performed by visually comparing 
the observed blood-uncleaved pacmilimab concentration, 
obtained by liquid chromatography in tandem with mass 
spectrometry,8 with the simulated one. We repeat the 
same simulations with our model and plot the observed 
data points along with the equivalent median simulation 
curves obtained from 100 VPs. We note that Stroh8 showed 
that PbTx works for a representative Ab (anti-CD166). It 
showed overall systemic exposure but can be tweaked (by 
mask strength) to change uptake in peripheral and tumor 
tissues. In this work, we have assumed that the PK prop-
erties of the PbTx are the same as the ones for the naked 
anti-PD-L1 monotherapy reported in ref. 11.

RESULTS AND DISCUSSION

Pacmilimab's effectiveness is modestly 
different than the unmasked antibody

Now that we have calibrated the QSP-IO model with 
the PbTx molecule dynamics, we proceeded to evalu-
ate the therapy in terms of effectiveness. The only refer-
ence clinical study of pacmilimab in TNBC is the phase 
I trial recently published.6 The proposed dosing regimen 
based on the trial is 10 mg/kg every 2 weeks (q2w), as 
it optimized the trade-off between drug efficacy and 
safety. Higher doses, that is, 30 mg/kg administered q2w, 

F I G U R E  2  (a) Cartoon demonstrating the PbTx dynamics described in ref. 7. The PbTx can exist in one of six6 possible states by either 
reversible unmasking or via irreversible mask cleavage by TME proteases. Five PbTx states are capable of binding with at least one target. 
Additionally, the side panels qualitatively describe how the mask cleavage occurs. (b) Model calibration to single dose PbTx data extracted 
averaged over the same 10,000 virtual patients for each dose.8 PbTx, Probody therapeutics; TME, tumor microenvironment.
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induced adverse reactions,6 whereas lower doses, such 
as 3 mg/kg administered q2w, may be less efficacious. 
The duration of the therapies for 16 patients with TNBC 
varied from a few months up to 96 weeks. Following the 
suggested schedule, we thus simulate the dose regimen 
of 10 mg/kg administered q2w for a duration of 400 days, 
which is similar to other PD-L1 immune-checkpoint 
inhibitor therapies.17 We proceed by simulating three 
cases for the same 10,000 VPs: untreated progression, 
unmasked antibody monotherapy, and PbTx monother-
apy. The “untreated” case refers to allowing the dynam-
ics of clinical progression to evolve without the addition 
of any external therapy. We assume that the length of 
these hypothetical untreated cases is the same as the 
therapy, that is, 400 days. The “unmasked antibody” 
monotherapy refers to injecting a fully cleaved (i.e., 
without both masks) antibody. We want to emphasize 
that the “unmasked” therapy is equivalent to the re-
sults of atezolizumab monotherapy reported in ref. 11. 
Because the unmasked antibody monotherapy will serve 
as the reference case, we assume that it will also be ap-
plied with the same dosing schedule as pacmilimab, that 
is, 10 mg/kg administered q2w.

In Figure  3a, we show the simulated percent change 
tumor size, as a ratio between the individual tumor vol-
ume at the end of the treatment and pretreatment, for 
selected representative 1000 VPs, chosen randomly from 
the 10,000 VP cohort, for the unmasked monotherapy. The 
percent change in tumor size is a common method for com-
paring the patient response to treatment.18 Equivalently, 
in Figure 3b, we show the change in tumor size for pac-
milimab monotherapy for the same 1000 patients. For 
both Figures 3a and 3b, we trace dotted limits at 20% and 
−30% following the RECIST 1.1 criteria.19 Specifically, we 
label the regions of progressive disease , stable disease 
and partial/complete response, which represents the re-
sponders. Visually, the data in these figures suggest that 
the number of responders is slightly higher for unmasked 
monotherapy (8% vs. 6% in the masked monotherapy). 
To better quantify this, we show the equivalent RECIST 
category bar plots as percentages of the patient cohort in 
Figure 3c. Each bar contains an error bar defining the 95% 
confidence interval (CI) and the p values between the en-
tire dataset for different cases (untreated, unmasked, and 
PbTx therapy) are also shown, see Appendix S1. Results 
suggest that the number of responders is slightly higher 

F I G U R E  3  Response, in terms of percent tumor change for the unmasked (a) and PbTx (b) anti-PD-L1 monotherapy. The same 
simulated patient cohort (N = 1000) is treated with each procedure following the same dosing schedule of 10 mg/kg q2w. The PbTx 
monotherapy appears to be slightly less effective than the unmasked therapy, in accordance to.18 (c) Bar plot obtained from applying the 
RECIST17 criteria to the data from panels (a) and (b) as well as the reference “untreated” case. The chart clearly shows that a masked 
therapy has an intermediate effect in terms of efficiency. (d) PFS from the three cases, Untreated, unmasked and masked monotherapy. 
This graph again supports the same conclusions obtained from panel c. (e) Total surface density of bound antibody or PbTx to PD-L1. This 
plot shows suggests that the similar efficacy of the PbTx treatment despite a lower density in bound antibodies. P values are (***p < 0.001; 
**p < 0.01, * p < 0.05). CR/PR, complete response/partial response; PbTx, Probody therapeutics; PD, progressive disease; PFS, progression-
free survival; SD, stable disease.
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for unmasked therapy compared to the PbTx monother-
apy (by 2%, p value < 0.001). Additionally, this result is 
in accordance with previous preclinical studies, where 
the response rate of mice treated with pacmilimab was 
similar to those treated with the unmasked equivalent.18 
Compared to the published phase I trial,6 we report sim-
ilar response rates to pacmilimab, model prediction of 
6% versus 7% in the trial.6 However, we would like to em-
phasize that the response to masked immunotherapy and 
unmasked immunotherapy are similar because they are 
within the CIs of each other.

We next probe the time evolution profiles of the pro-
gression-free survival (PFS) shown in Figure  3d. As ex-
pected, the untreated case shows the lower bound of the 
response. The PFS of the masked and unmasked mono-
therapies appear to be very close at each timepoint with 
the PFS for unmasked drug being higher. Because this 
property is distributed in time, we hypothesize that there 
is a dynamic effect causing this difference. From our simu-
lations we can capture the density of total bound antibody 
to the cancer cells, as shown in Figure 3e. Here, both the 
profiles of unmasked and masked monotherapies show an 
initial steep rise in binding due to the high affinity of the 
antibodies to bivalent binding to receptors, that is, prefer-
ential bivalent bonding promoted by the avidity. However, 
after the initial peak, it seems that the pacmilimab curve 
is similar to the unmasked case. This result is despite the 
masking mechanism of the PbTx, which reduces the expo-
sure of the antibody active sites and, ultimately, reduces 
the affinity of the antibody to the receptor. Thus, because 
the PD end points are related to the free surface density of 
PD-L1, similar coverage of this receptor on the cancer cell 
surface induces a similar immunosuppression leading to a 
similar response.

Masking the antibody increases tumor 
specificity of the compound activity

We have discussed the effects of masking antibodies in 
terms of the antitumor efficacy, but we have yet to under-
stand whether the simulated activity of PbTx is more lo-
calized to the tumor. The localization of drug activity has 
been one of the most researched topics in recent years.2 
PbTx are designed to promote preferential activation of 
the therapeutics in the tumor. The key component that 
governs this localization in activity is the cleavability of 
the mask due to proteases found and overexpressed in the 
TME. Here, we proceed to evaluate how the interplay be-
tween reversible unmasking and local mask cleavability 
affect the localization of drug activity.

Multiple states of the pacmilimab molecule are active, 
as shown in Figure 4a, namely any state that has at least 

one open active site. Hence, the active states are any of 
the PbTx molecules that have been cleaved at least once 
or those which have at least one active site revealed by the 
unmasking process. We denote the concentration of these 
states as [A]. We compare the ratio of the concentrations 
of active antibodies between different compartments. For 
example, in Figures 4b and 4d, we compare the ratio be-
tween active antibody concentration in the tumor [A]T 
compartment with the peripheral [A]P and central [A]C 
compartments, respectively. These profiles are obtained 
by averaging the ratios over the entire cohort of VPs. 
Independently of the therapy, whenever a new dose is in-
jected, the ratios [A]T ∕[A]P and [A]T ∕[A]C drop, due to 
high concentration of drug following administration and 
delay of distribution to the tumor. This delay is due to the 
transport timescales required for the molecules to reach 
the TME from the central compartment where they are 
initially injected. However, there seem to be differences 
in these profiles, where the ratios [A]T ∕[A]P and not only 
[A]T ∕[A]C are more regular, that is, demonstrate much 
less stark peaks, but also seem overall larger in value for 
the PbTx compared to the unmasked antibody. To quantify 
these differences, we calculate the respective area under 
the curve profiles in Figures  4c and 4e. In both these 
panels, the masked monotherapy is always greater than 
the unmasked anti-PD-L1 monotherapy profile (around 
10% at the end of treatment), suggesting that masking 
the antibody has increased the relative exposure of ac-
tive (unmasked or partially unmasked) molecules in the 
tumor with respect to the rest of the body. Interestingly, 
Figures  4f and 4g show the absolute value of the con-
centrations (nanomolar) of the active molecules in the 
tumor and peripheral compartments. In both cases, the 
amount of the masked monotherapy is always more than 
an order of magnitude smaller than the unmasked case 
in the peripheral compartment. However, we would like 
to emphasize that although the absolute values between 
masked and unmasked therapy concentration differ, the 
ratios between these are closer because the reduction fac-
tor in active form concentration due to masking is similar 
between compartments (although it is higher outside the 
tumor). This result is intriguing as it means that a simi-
lar antitumor response to the drug was simulated even if 
at any timepoint the amount of active antibody is much 
lower in the peripheral compartment.

Influence of key biomarkers and 
Probody therapeutic parameters on 
patient response

We have discussed the efficacy and localization of the 
PbTx monotherapy. We now proceed to discuss the key 
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parameters or physical mechanisms governing the simu-
lated patient response to pacmilimab.

As a first step, we ran a sensitivity analysis via par-
tial rank correlation coefficient and report the results in 
Figure  5a.19 Here, we study the correlation between the 
dependence of some key biomarkers, such as tumor size 
and immune cell densities, as a function of the patient de-
pendent variables to determine which variable may govern 
response. The patient-dependent variables and their dis-
tributions can be found in Table S1. For each biomarker, 
we plot the five highest and five lowest correlation coef-
ficients. From these, we are interested in measuring the 
key biomarkers included in pacmilimab dynamics, such 
as PD-L1 expression, PD-L2/PD-L1 ratio, as well as the 
dependence on the patient variable kcvg. Throughout the 
analysis, we find that PD-L1 expression and the cleavage 
rate kcvg are not sensitive parameters for response. PD-L2/
PD-L1 was a sensitive parameter and is correlated to in-
crease in tumor size.

In addition to the sensitivity analysis, we also as-
sessed the difference in distinct biomarkers between 
simulated responders and nonresponders. In particular, 
we assessed the CD8 (or effector T cells [Teff]), CD4, 
Treg densities, Teff/Treg and M1/M2 ratios under pre-
treatment and post-treatment conditions, in Figure 5b. 

From these panels, we see that T cell densities are higher 
in responders compared to nonresponders. Additionally, 
the Teff/Treg ratio is higher in responders. Finally, it ap-
pears that the M1/M2 ratio is higher in nonresponders, 
a characteristic of the model explained by Wang et al.11 
Briefly, whereas M2 macrophages exhibit immunosup-
pressive activities, there is a correlation between M1-
like macrophages and immunosuppressive species, 
which was also observed clinically.11,22 However, as 
mentioned in Wang et al.11 the role of tumor-associated 
macrophages in immunotherapies needs to be better 
understood.23

We next integrate the information gained from the sen-
sitivity analysis and generate boxplots to evaluate the effect 
of key biomarkers of our simulated data on the objective 
response rate (ORR). In Figure 5c, for selected biomarkers 
we divide the patient cohort into two subgroups, that is, 
patients with the biomarker value above the median ver-
sus the rest. Hence, each subgroup will have exactly half 
of the total number of patients, although the subgroups 
for different biomarkers may not contain the same pa-
tients. Additionally, in this plot, the 95% CIs for ORR are 
shown which are obtained via bootstrapping. For compar-
ison, we show as a dotted line the ORR obtained from the 
entire simulated patient cohort. Simulations suggest that 

F I G U R E  4  (a) Cartoon showing the active states of the masked and unmasked antibodies. (b, d) These curves represent the ratios of 
the concentration of active antibody in the tumor compartment, [A]T, with respect to the concentrations in the periphery, [A]P, and blood, 
[A]C. (c, e) are the respective AUC curves obtained from b and d. (c) The AUC for the PbTx monotherapy is higher than the unmasked 
therapy, suggesting a higher selectivity of the PbTx therapy. The same is true for (e), where in this case a higher AUC means a relatively 
lower concentration of active antibody is carried around the body. (f, g) These plots report the relative concentrations of active antibodies in 
the tumor (f) and periphery (g). In both cases, the PbTx curve is orders of magnitude below the unmasked case, which suggest that a similar 
efficacy is obtained even though the amount of active molecule circulating is much lower for PbTx therapies. AUC, area under the curve; 
PbTx, Probody therapeutics.
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a higher Teff/Treg ratio is associated with increased ORR. 
This result is expected as Teff are the main cell types for 
cytolytic activity against tumor cells, whereas the Tregs 
function as inhibitors of the immune response. Similarly, 
a higher M1/M2 ratio seems to be associated with higher 
ORR. On the other hand, PD-L1 expression on cancer cells 
does not strongly affect the ORR. This result corroborates 
the absence of PD-L1 expression as a significant vari-
able in the overall sensitivity analysis. This is in line with 
studies in literature that report that PD-L1 expression on 

cancer cells is rather controversial as a biomarker in deter-
mining antitumoral response.24 However, a high PD-L2/
PD-L1 ratio seems to be associated with a reduction in 
ORR. This result is due to the PD-L2 acting as an immune 
checkpoint for PD-1 while not binding to the PbTx mole-
cule. Thus, more PD-L2 means more unchecked ligands 
that inhibit the immune response. Finally, the panel sug-
gests that there is no correlation between higher cleavage 
rate and higher ORR, but this could be due to the small 
interpatient variability.

F I G U R E  5  (a) Sensitivity analysis describing the key patient-dependent parameters that affect important observables. (b) Summary 
of the biomarkers of responders and nonresponders before and after the PbTx monotherapy treatment. (c) Division into subgroups of the 
patient cohort to determine which biomarker or patient-dependent parameter affects the ORR. Each data point is built by bootstrapping 
from the relative half of the cohort (N = 500) and the error bars represent the 95% CI. CI, confidence interval; ORR, objective response rate; 
PK, pharmacokinetic; PbTx, Probody therapeutics.
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Exploratory study with our QSP 
model suggests Probody therapeutic 
molecule characteristics and alternative 
dosing schedule

We have assumed that the PbTx parameters relate to 
those published in the literature and that the dosing 
schedule is fixed to the 10 mg/kg q2w. We next explore 
the possibility of changing the design features of the PbTx 
molecule to potentially improve antitumor response. To 
this end, we vary the two parameters KM, the equilibrium 
constant describing the unmasking, and average kcvg 
while keeping the rest of the PbTx parameters, such as 
the transport and clearance rates, the same as previously 

calibrated parameters for atezolizumab.11 We vary 
only these two parameters because they are the PbTx-
specific parameters. The results are summarized in the 
table shown in Figure  6a–d, where we plot the change 
in ORR as a function of the ratio KM ∕Kref and kcvg∕kref
, where Kref and kref are the reference values of the PbTx 
parameters used in the previous simulations and reported 
in Tables S1 and S2. Simulations suggest that increasing 
KM and kcvg increases the ORR. This is an expected result 
as increasing these two parameters makes the PbTx more 
likely to be unmasked in the tumor.

During the phase I trial mentioned in ref. 6, the max-
imum dose tested in patients was 30 mg/kg scheduled 
q2w and the previous dose, with the same frequency, was 

F I G U R E  6  (a) Table showing the variation of the ORR as a function of KM versus kcvg. Kref and kref refer to the unmasking and average 
cleavage rates reported by Stroh et al.8 The table shows that the ORR increases as KM and kcvg increases. (b) Selected ORR dependencies 
on KM parametrized by a fixed kcvg. (c) This is the same PFS reported in Figure 2c with the addition of the PFS for a reported therapy of 
KM ∕Kref = 10 and the average kcvg ∕kref = 10 . (d) Effect on the ORR of the dosing schedule for masked monotherapy. The ORR increases as 
the dose increases or the interval between doses decreases. There were 1000 for each data point or curve. ORR, objective response rate; PFS, 
progression-free survival.



   | 103QSP-IO MODEL OF CONDITIONALLY ACTIVATED ANTIBODIES

10 mg/kg. Here, we now aim to use the predictive power 
of the model to explore whether changing the dose level 
or dose frequency varies the response to the therapy. The 
summary of our simulations is shown in Figure 6d, where 
we explored doses of 1, 3, 10, and 15 mg/kg with frequen-
cies ranging q1w, q2w, q3w, and q4w. Each (pair of dose 
and dosing interval) contains at least 1000 simulated VPs. 
Two clear trends emerged. For a fixed interval, a higher 
dose seems to give higher response. On the other hand, for 
a fixed dose, longer intervals tend to give a lower response. 
Compared to the reference case of 10 mg/kg every q2w, 
increasing the dose to 15 mg/kg and reducing the inter-
val to q1w increases the response by only about 30%, that 
is, from an ORR of 0.06 compared to the maximum ORR 
0.08. However, we emphasize that these results do not ac-
count for increased probability of toxicities, not modeled 
in our framework, that may occur from higher exposure 
to the molecule.

DISCUSSION AND CONCLUSIONS

In this paper, we have modified a QSP-IO model to 
study the effects of pacmilimab, a conditionally acti-
vated PD-L1 blocking antibody, applied to TNBC. We 
have used the model to compare the efficacy and tumor 
localization between a masked and unmasked antibody. 
Clinical trials have shown pacmilimab 10 mg/kg com-
paring favorably to historical data from PD-L1 or PD-1 
inhibitors in patient populations unselected for PD-L1 
expression25 Niang et al.6 have reported the ORR as 7%, 
similar to atezolizumab in patients with metastatic tu-
mors, even though patients in that study did not exhibit 
high PD-L1 expression.26 Our simulations corroborate 
that the efficacy induced by pacmilimab therapy is simi-
lar to the unmasked version. However, although our 
patient response percentages are close to the ones re-
ported in clinical trials,6 our waterfall plots in Figure 2b 
do not exactly match the ones reported by Niang et al.6 
This mismatch could be due to a number of reasons. For 
example, our model considers a single lesion, whereas, 
in general, the RECIST criteria can be applied to meta-
static tumors. Additionally, the number of patients in 
our simulations are different from those reported by 
Niang et al.6 The model also suggests that masking im-
proves tumor localization of the drug. The preferential 
localization and similar response rate are in agreement 
with experiments performed on mice.18 Additionally, 
our simulations suggest that the PbTx monotherapy 
provides similar therapeutic benefit even though the 
local tumor concentration of active molecules is lower 
compared to the unmasked molecule. We also have 
shown how the key biomarkers, such as immune cell 

densities, change between responders and nonrespond-
ers to this therapy. Simulations suggest that a higher 
ratio Teff/Treg ratio increases the ORR. This result is 
expected as Teffs have antitumoral activity whereas the 
Tregs function as inhibitors of the immune response. 
Similarly, a higher M1/M2 ratio seems to be associated 
with higher ORR. On the other hand, PD-L1 expression 
on cancer cells does not strongly affect the ORR. This 
result corroborates the absence of PD-L1 expression as 
a significant variable in the overall sensitivity analysis. 
This is in line with studies in literature that report that 
PD-L1 expression on cancer cells is rather controversial 
as a biomarker in determining antitumoral response.22 
However, a high PD-L2/PD-L1 ratio seems to strongly 
reduce the ORR. This result is due to the PD-L2 acting 
as an immune-checkpoint for PD-1 while not binding 
to the PbTx molecule. Thus, more PD-L2 means more 
unchecked ligands that inhibit the immune response. 
Additionally, our framework allowed us to run an ex-
ploratory study on the design parameters of the PbTx 
kinetics and of the dosing schedule to determine the 
combination that maximizes the ORR.

There are some limitations to this study which we 
aim to overcome in future work. For example, cancer as-
sociated fibroblasts (CAFs) are not accounted for in our 
model. CAFs are fibroblasts which via cytokine signal-
ing, such as IFN-γ,27 polarize and strengthen the cancer 
against antitumoral stimuli. This pro-tumorigenic activ-
ity is known to occur via extracellular matrix remodel-
ing, which provides a physical barrier to the infiltration 
of T cells and reduced cancer cell exposure to immuno-
therapies,28,29 and by the release of growth factors, such 
as HGF30 or other cytokines which stimulate tumor pro-
gression. In fact, because most of the activation due to 
protease activity occurs in the TME, the barrier to the 
penetration of therapeutic agents due to CAFs could 
influence the PbTx therapy's efficacy. Additionally, al-
though we have included the out-of-synapse dynamics, 
we have not included any specific interactions between 
the antibody and PD-L1 that are known to lead to down-
stream effects.12 The QSP modeling platform described 
here can be readily extended to include other cancer 
types or other PbTx checkpoint inhibitors by adapting 
the appropriate parameters, such as the ones describing 
the cancer module (see Appendix S1), the kinetics of the 
PbTx, such as the cleavage rate, which may be cancer 
dependent,27 or other parameters that govern binding, 
unbinding, and tumor penetration of the molecule. 
Another limitation of the model is due to the lack of 
explicit modeling of the toxicities associated with the 
therapy. However, evidence from literature and the rela-
tive exposures to active molecules from our results sug-
gest that the PbTx molecule's conditionality obtained 



104 |   IPPOLITO et al.

from masking will reduce the toxicity. We aim to extend 
the model in future work to include toxicity effects to 
further evaluate the potential of conditionally acti-
vated therapies. Additionally, the framework described 
in this work is valid for single lesion tumors, whereas, 
in general, RECIST scores also depend on metastases. 
Recent perspectives have also suggested the importance 
of including multiple lesions because they are critical 
in understanding RECIST scores.31 Arulraj et al.32 have 
used omics data to extend a single lesion QSP model to 
include multiple metastases. This framework could be 
extended to this setting to evaluate the effects of a PbTx 
therapy for metastatic tumors, considering lesion-to-le-
sion parameter differences, such as the cleavage rate.

Overall, in this work, we have provided a platform to 
describe the activation of the cancer immunity cycle in 
response to a PD-L1 blocking PbTx and we have demon-
strated its predictive potential. Moreover, the framework 
allows for exploration of design criteria for the PbTx to op-
timize its activation in the tumor microenvironment.
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